
3 Styles of Hashing

Whether you are building a HashTable to represent a set off values or a
HashMap to represent a key-value association, there are 3 variations on the idea
of hashing that are in common use:

A. Linear Open Adressing is the style we have been discussing. We use the
key’s hash value to find a starting index in the table, and from there we do a
linear search to find either the key we are looking for or an empty entry in
the table. If h is the hash value and C is the table size this looks at entries
with indices h, (h+1)%C, (h+2)%C, (h+3)%C, etc

B. Quadratic Open Addressing is identical to linear addressing, except that it
looks at indices h, (h+12)%C, (h+22)%C, (h+32)%C. etc.

C. Chained Hashing puts a linked list at every entry of the table. All of the
entries with the same hash value are store in that vvaluees linked list.

The load factor l of a hash table is the fraction of the table that is full: the
number of keys we have in the table divided by the size of the table. An empty
table has load factor 0; a full table has load factor 1.

Linear Open Addressing

A proof is beyond the mathematical level of this course, but for linear open
adressing it can be shown that if the hash function spreads the keys out, so that
every index is equally likely to be the hash value of a key, then the expected
number of comparisons we have to make before we get to an open square of
the table is

1 +
1

1 − 𝜆 2

2

For example, if l is 0.5 this comes to 2.5

Think about what this means.

If we manage our table so that the load factor is never more than 0.5, then
regardless of how much data we have an insertion or lookup in the table takes
on average 2.5 comparisons. This is a constant; insertions and lookups are
independent of how much data we have. They run in time O(1)!!

Of course there is a price to pay for this: we have to start with a table large
enough to keep our load factor small. We are trading space for time. On the
next slide you can see what happens if the loadfactor becomes too large.

Here is a table of the expected number of probes needed to find an open spot
in a hash table with load factor l, assuming linear probing:

λ Number of
Probes

0.1 1.11

0.2 1.28

0.3 1.52

0.4 1.89

0.5 2.50

0.6 3.62

0.7 6.06

0.8 13.00

0.9 50.5

As you can see, the performance degrades quickly once the load factor rises
above 0.5. The only alternative is to use a larger table, but remember that the
hash values depend on the table size. This means that if we change the table
size we have to re-insert every entry of the table. That is painful. With
hashing there is a big incentive to choose a sufficiently large table at the start

Quadratic Addressing

Quadratic open addressing has the same problems as linear open addressing,
plus one more. With linear addressing, we are sure that the indexes h,
(h+1)%C, (h+2)%C will eventually reach every square of the table, This is not
true for quadratic addressing in general, but you can show this:

If the table size is prime and if the table is no more than half full, then quadratic
probing will find an empty location for any insertion.

So why does anyone bother with quadratic addressing? In practice it tends to
work better. Most hash functions are not perfect, but leave the keys in clusters
in a hash table. These clusters are made worse by the way linear addressing
handles collisions. Quadratic addressing takes larger and larger jumps to get out
of the current clusters. There is no complete mathematical analysis of the
expected number of probes needed for quadratic addressing, but in both
practice and simulations it runs faster than linear addressing. It is a trivial
matter to switch between thee two open addressing styles, so if you ever
implement your own hash tables you can easily see which one works better for
your data.

Chained Hashing
Let’s revisit an example where we add some people to a hash table of size 7.

Name hashValue

Ben 6

Bob 3

Steven 2

Cynthia 2

Alexa 6

Jackie 4

0 1 2 3 4 5 6

Bob AlexaCynthia

Steven Ben

Jackie

Here is a picture of a chained hash table for this data. Each entry of the table is a linked
list. To add an item to the table we add it to the end of its hash value’s list. To find an item
we do a linear search through its hash value’s list.

Note that the average size of a list is the sum of the sizes divided by the
number of lists, which is the same as the number of keys divide by the size
of the table, which is just the load factor. For unsuccessful searches the
average number of comparisons is just the load factor. For successful
searches it is half of the average length of a list, or half of the load factor.

Chained hash tables are not as sensitive to the load factor as tables with
either style of open addressing. On the other hand, chained tables are very
sensitive to the quality of the hash function. A function that hashes many
keys to the same index will give us bad performance regardless of the load
factor. People have different preferences, but one reasonable approach to
hashing is to use either style of open addressing and being careful to start
with a fairly large table so the load factor remains small.

